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 Abstract: As unmanned ground vehicles take on more and more intelligent tasks, determination of potential obstacles 
and accurate estimation of their position become critical for successful navigation and path planning.  The performance 
analysis of obstacle mapping and unmanned vehicle positioning in outdoor environments is the subject of this paper.  
Recently, the National Institute of Standards and Technology’s (NIST) Intelligent Systems Division has been a part of the 
Defense Advanced Research Project Agency LAGR (Learning Applied to Ground Robots) Program.  NIST's objective for 
the LAGR Project is to insert learning algorithms into the modules that make up the NIST 4D/RCS (Four 
Dimensional/Real-Time Control System) standard reference model architecture which has been successfully applied to 
many intelligent systems.  We detail world modeling techniques used in the 4D/RCS architecture and then analyze the 
high precision maps generated by the vehicle world modeling algorithms as compared to ground truth obtained from an 
independent differential GPS system operable throughout most of the NIST campus.  This work has implications, not 
only for outdoor vehicles but also, for indoor automated guided vehicles where future systems will have more and more 
onboard intelligence requiring non-contact sensors to provide accurate vehicle and object positioning. 
 
 

 Index Terms —world modeling, global positioning system, ground truth, performance analysis, stereo vision, mapping. 

I. INTRODUCTION 

The National Institute of Standards and Technology’s (NIST) Intelligent Systems Division (ISD) has been 

developing the RCS [1, 2] reference model architecture for over 30 years.  4D/RCS is the most recent version of 
RCS developed for the Army Research Lab Experimental Unmanned Ground Vehicle program.  ISD has studied the 
use of 4D/RCS in defense mobility [3], transportation [4], robot cranes [5], manufacturing [6, 7] and several other 
applications.   

In the past year, ISD has been applying 4D/RCS to the DARPA LAGR Program [8].  The DARPA LAGR 
program aims to develop algorithms that enable a robotic vehicle to travel through complex terrain without having to 
rely on hand-tuned algorithms that only apply in limited environments. The goal is to enable the control system of 
the vehicle to learn which areas are traversable and how to avoid areas that are impassable or that limit the mobility 
of the vehicle. To accomplish this goal, the program provided small robotic vehicles to each of the participants 
(Figure 1). The vehicles are used by the teams to develop software and a separate DARPA team, with an identical 
vehicle, conducts tests of the software each month to compare against the DARPA baseline controller software. 
DARPA operators load the software onto an identical vehicle and command the vehicle to travel from a start 
position to a goal waypoint through an obstacle-rich environment. They measure the performance of the system on 
multiple runs, under the expectation that improvements will be made through learning.  Developing high quality 
obstacle maps is therefore, critical to vehicle performance and learning. 
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Figure 1. The DARPA LAGR vehicle 



The vehicles are equipped with four computer processors (right and left cameras, control, and the planner); 
wireless data and emergency stop radios; GPS receiver; inertial navigation unit; dual stereo cameras; infrared 
sensors; switch-sensed bumper; front wheel encoders; and other sensors. 

Section II of this paper describes in detail, the 4D/RCS World Model (WM) followed by a detailed description 
of the color image classification in Section III.  NIST’s world modeling performance is then discussed in section IV 
with differential GPS (ground truth) being compared to the onboard vehicle mapping system.  Section V includes 
conclusions and suggested future work. 

II. WORLD MODEL 
The world model is the system's internal representation of the external world. It acts as a bridge between 

sensory processing (SP) and behavior generation (BG) in the 4D/RCS hierarchy by providing a central repository for 
storing sensory data in a unified representation.  It decouples the real-time sensory updates from the rest of the 
system. The WM process has two primary functions: 
1. To create a knowledge database (map) and keep it current and consistent. In this role, it updates existing data in 

accordance with inputs from the sensors, and deletes information no longer believed to be representative of the 
world. It also assigns (multiple) confidence factors to all map data and adjusts these factors as new data are 
sensed. The types of information included in the map are state variables (e.g., time, position, orientation), system 
parameters (e.g., coordinate transforms, sensor-to-vehicle offsets, etc.), and lists or classes of sensed objects. The 
WM process also provides functions to update and fuse data and to manage the map (e.g. scrolling) 

2. To generate predictions of expected sensory input based on the current state of the world and estimated future 
states of the world. For the LAGR autonomous, off-road, learning application, very little a priori information is 
initially available to support path planning between the vehicle's current position and a final goal position. 
However, as it learns, the world model memorizes, constructs and maintains all the information necessary for 
intelligent sensing. 

 
The objective of the LAGR project is to have a small vehicle reach its off road navigation goal within 5 m on a 

100 m course. To achieve this goal, we use two pairs of stereo camera systems, two infrared sensors and bumpers 
along with onboard GPS and inertial guidance systems. Two levels of 4D/RCS are implemented as described in [8]. 
Each level of the world model obtains a different map resolution which temporally fuses information from each 
sensory processing module.  The sensory processing modules include a stereo obstacle detection module, a bumper 
obstacle detection module, an infrared obstacle detection module, an image classification module, a slippery 
detection module, and a learning module.  

Each level, World Model 1 and 2 (WM1 and WM2) of the LAGR world model contains a different resolution of 
a two dimensional array (200 cells x 200 cells). Each cell in the map contains the fused information extracted from 
processed sensor data.  Figure 2 shows two different resolutions of maps constructed from the stereo obstacle 
detection module in the world model.     

The position of the vehicle is shown on the map as a green box with a white triangle protruding from it to 
signify stereo cameras field-of-view; the red, yellow, blue, light blue, and green are cost values ranging  from high 
to low cost, respectively; and the black represents unknown areas.  The violet, skewed-rectangle represents the local 
vehicle plan while the white line represents the long range plan with the dots being planned waypoints.  The orange 
line is the direction to the goal. 
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Figure 2: Cost Maps with 0.6 m resolution (left) and 0.2 m resolution (right).  Obstacle costs = 0 (lowest cost - 

green) through red (highest cost - 256). 
 

Each map grid cell represents an area defined by the header grid size and is marked with the time it was last 
updated. The total extent of the map is 40 m for WM1 and 120 m for WM2. The information stored in a cell 
includes: 

1. The average ground and obstacle elevation height; the variance, minimum and maximum height; and a 
confidence measure reflecting the “goodness” of the elevation data.  

2. A data structure describing the terrain traversability cost , confidences of the cost which are updated by the 
stereo obstacle detection module, image classification module, bumper module,  infrared module, etc. The 
costs and the confidences are combined to determine the relative safety of traversing the grid with the 
following equation: 

tionclassificaclagrLearnlstereObsscell CostWCostWCostWCost *** ++=  

where is the cost to traverse for each grid cell.  cellCost

lagrLearnCost  is the fused cost in the world model based only on the output from the lagr stereo 
module. 

tionclassificaCost  is the fused cost in the world model based only on the output from the classification 
detection module. 

And is the weighting constant on each cost.  clsW ,,

 
The final cost represents the best estimate of the terrain traversability based on information fused over time. 

Each cost has a confidence associated with it, and the world modeling selects the map grid label with the highest 
confidence.  The final cost maps are constructed by taking each fused cost from all the sensory processing modules 
and calculating the smooth cost maps which indicates the cost is function of distance to the obstacles. 
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A. Maintaining and Updating the World Model 
The world model map must be maintained and updated in a timely manner. World model functions have been 

developed to scroll the map as the vehicle moves, to update map data, and to fuse data from the sensory processing 
modules with some uncertainty.  

A scrolling, local map is updated with new sensor data while keeping the vehicle centered on the map. This 
approach has the advantage of minimizing grid relocation. For efficiency, no copying of data is done; only updating. 
When the vehicle moves out of the center grid cell of the map, the scrolling function is enabled. The scrolling 
function includes re-centering the map and reinitializing the map borders.  Because the map is vehicle-centered, only 
the borders of the map contain new regions that must be re-initialized. The initialization information can be obtained 
from remembered maps which are saved from previous test runs.  However, as shown in Figure 3 (left), the first run 
will have only information very local to the vehicle at startup.  Figure 3 (right) shows a map saved from a previous 
vehicle run from start to the goal with vehicle ready to begin another run. 

 

   
Figure 3. Left: Initialization map without previously saved obstacle information. Right: Map with previously saved 

obstacle information being passed on to the next vehicle run. 
 

The map updating algorithm is based on the concept of confidence-based mapping described in [9]. In this 
algorithm, confidence measures increase or decrease linearly as the model receives updated information from the 
sensors. When a map cell receives a vote for a class such as an obstacle, an elevation measurement, a terrain 
classification, etc., the cell's confidence in that class is incremented by a predefined constant.  

The cost to traverse each cell (region) is updated and temporally fused based on the traversability measurements 
which are computed from a learning module [10], stereo range data [11], infrared and physical bumpers. The 
obstacle's confidence increases by an empirically predefined weight constant. 

The cost and elevation confidence of each grid cell are updated every sensor cycle: e.g., 5 Hz for the stereo 
obstacle detection module, 3 Hz for the learning module, 5 Hz for the classification module and 10 Hz -20 Hz for 
the bumper modules. The confidence values are used as a cost factor in determining the traversability of a grid. 

III. COLOR IMAGE CLASSIFICATION 
The basic idea of the color image classification algorithm is to determine traversable areas using a road 

segmenting algorithm as proposed in [12].   We have modified the algorithm to not only segment the road but to 
segment the image based on a color model.  We first represent the color distributions seen in the ground and the 
background.  A 30 x 30 histogram of red and green for the color distribution has given the best results in the color 
modeling of ground and background in the LAGR environments. 

The most critical assumption for the approach is that the area in front of the vehicle is good/safe to traverse.  For 
most driving this is the usual case.  A white, trapezoidal region (see Figure 4 (left, bottom)) is assumed to be 
good/safe ground for traversing and is histogrammed at each frame to construct the initial ground model.  The 
trapezoidal region is the projection of a 1 m wide by 2 m long area of ground in front of the vehicle under a ground 
plane assumption.  
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Figure 4. Left, top shows the original color images. Left, bottom shows the classification images based on the 

histogram color model (defines cost image).  Right shows the projection of an image pixel based on ground plane 
assumption. 

The construction of the background model initially and randomly samples the area above the horizon (image 
top). This can be problematic since the area above the horizon in the image might only be sky. However, once the 
algorithm is running, construction of the background model can be extended to the pixels beyond the horizon which 
the previous classification result believed to be background.  Using the previous temporal fusion result, the 
algorithm randomly samples pixels in the current frame that the previous temporal fusion result identified as 
background.  These random samples are used to construct the background color model. 

In addition, color models are constructed from the original 512 x 384 image.  Construction from the original 
image in this case means that more points are available to the color models, leading to more accurate models.  
Because the original image contains noise data, the color models will also inherently have some robustness against 
noise.   

While the algorithm shows good results on single model ground regions when the ground is homogenous with 
respect to time and space, it has trouble with large amounts of non-homogeneity, e.g. driving on unshaded ground 
into completely shaded ground.  Even if the algorithm had previously seen both ground conditions, the algorithm 
will have trouble correctly segmenting the “newly” encountered ground condition.  This is due to the fact that the 
ground is modeled using a single color model while the ground clearly consists of multiple color distributions.  Even 
though the single color model is capable of temporarily remembering multiple ground conditions through temporal 
fusion of histograms, this memory is very short.  If the algorithm sees shaded ground for a long enough period of 
time, it forgets what unshaded ground looks like.  As such, the single ground color model can usually remember 
only one color distribution at a time. 

In order to remember multiple color distributions, we must use multiple ground color models.  This extension 
leads to a drastic improvement in the algorithm's results by allowing the algorithm to remember a number of 
previous ground conditions and to apply these learned conditions to future images.  This ability to learn leads to a 
powerful capacity to correctly segment in very difficult situations. As new data are processed, each color 
distribution model is updated with new histograms, changing with time to fit changing conditions. The new ground 
histograms to existing color models using a comparison function.  If the difference exceeds a specific threshold and 
a maximum number of ground models has not yet been reached, then the algorithm enters a period known as the 
learning mode which will generate a new color model.   Otherwise, the algorithm uses the histogram to update the 
closest ground color model.   

The learning mode is a period of time in which the algorithm monitors new histograms in an attempt to pick out 
the histogram that is most different from existing ground models.  This is done to avoid picking color models that 
contain significant amounts of overlap.  In the learning mode, if a histogram is found to be more different than a 
previous histogram, the learning mode is extended.  Eventually the learning mode will end, and the most different 
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histogram is used to create a new color model.  Note that during the learning mode, none of the preexisting color 
models are updated.  This, however, means that new histograms are unnecessarily being thrown away until the 
learning mode has ended.  To deal with this, another ground model is included that essentially implements the single 
model case, taking a summation of a number of previous histograms.  This color model helps to represent color 
distributions that would normally have color models, but do not while learning is on going. 

A. Ground Probability Calculation 
In this step, the algorithm goes through every pixel in an image and calculates a ground probability based upon 

its color.  The end result is a probability map that represents the likelihood that an area is ground.  Given a specific 
color, a specific ground color model and the background color model, ground probability is calculated as:  

backgroundground

ground
ground NN

N
P

+
=  

where:  and are the number of hits in the corresponding histogram bin. backgroundN groundN
In the case of a single ground model, a single probability is calculated.  With multiple ground models, multiple 

ground probabilities are calculated at each pixel.  The largest ground probability is selected as the ground probability 
for that pixel.  The justification is that a color may fit into one ground model better than all of the other models.  For 
example, a dark pixel may fit into a model of shaded ground better than into a model of unshaded ground. 

B. Temporal Fusion 
This step takes ground probabilities across multiple frames and temporally fuses them together, Pt, to achieve a 

more stable result.  The end result is a final probability map updated from frame to frame and expected to be more 
consistent than individual probability maps constructed from frame to frame. w is a weighting constant and wmax is 
the maximum number of images for temporal fusion.    

The temporal fusion algorithm used in this project can be best described as a running average with a parameter 
to adjust for the influence of new data.  The algorithm is presented here: 
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The ability to adjust the influence of new data is an important aspect of the temporal fusion algorithm.  A 

number of situations exist where this capability can have an important role.  For example, while the vehicle is 
turning, it is likely that the probability maps from frame to frame will have very little overlap.  In such a case, it is 
likely helpful to set the influence of new data very high. 

The final probability map is used to determine the traversability cost. The traversability cost is determined by 
the probability:  
 

Cost = probability of pixel being on the ground * 250. 
 

In order to reduce processing requirements, probabilities are calculated on a reduced version of the original 
image.  The original image is resized down to 128 x 96 pixels through an averaging filter.  This step has the 
additional benefit of noise reduction.  Experimentation shows that this step does not significantly impact the final 
segmentation.  A noteworthy aspect of this algorithm is that the color models were constructed from the original 
image for better accuracy, whereas probabilities are calculated on a reduced version of the image for greater speed. 
Each pixel with cost in the image will be placed in the world model maps using ground plane projection. 

IV. WORLD MODEL QUALITY: GROUND TRUTH COMPARED TO VEHICLE POSITIONING 

A. Ground Truth Generation 
In order to support evaluation of the quality of the world model produced by the vehicle, a series of 

measurements was performed to establish ground truth.  The vehicle was tested on a course consisting of a number 
of obstacles, including several lines of fencing and obstacles constructed by placement of hay bales.   The locations 
of these objects were precisely determined to provide ground truth.  The ground truth determination was performed 

 6



using a two-part system available on the NIST campus.  The two components are a differential GPS base station and 
a portable GPS with data logging capability. 

A differential GPS base station has been installed in the tallest NIST building with antennas placed on the 
building’s roof.  The base station consists of the following components: 

• A Novatel DL4 dual frequency, carrier phase GPS receiver* 
• A FreeWave 915 MHz spread spectrum data radio 
• An uninterruptible power supply (UPS). 

 
The base station antenna location was surveyed to millimeter level accuracy by collecting several hours of data, 

and post processing that data to obtain a relatively accurate position.  The GPS unit uses this known location and its 
currently computed location to provide correction messages to other (rover) receivers in the area. 

The base station GPS unit is configured to output differential corrections in CMR+ format. These are 
transmitted by the data radio at a 1 Hz rate, and available to rover receivers throughout the NIST site.  Proper 
operation of the base station was confirmed by evaluating position reports of a rover GPS receiver located over 
National Geodetic Survey markers on the NIST campus. 

A portable, rover component was used to collect data describing the obstacle locations (ground truth).  A 
complete, portable position logging system consisting of another Novatel DL4 GPS receiver and antenna, a data 
radio receiver and antenna, and battery power supply has been configured in a small, portable enclosure for this 
purpose (see Figure 5).   

This “ground truth box” receives the CMR+ messages from the base station GPS via the data radio link, and in 
favorable GPS conditions, operates in Real-time Kinematic (RTK) mode, providing position data with accuracy of a 
few centimeters.  Data was collected by simply carrying the unit around the course obstacles, using care to position 
the antenna center above the obstacle edges.   Data was collected at a rate of 1 Hz, which was suitable for walking 
around the obstacles.  Higher data rates could be used   The data were inspected to verify that each position data 
record to be considered ground truth was logged while the unit was operating in RTK mode and that each such 
record indicated that the standard deviation of the northing and easting position were below 6 cm.  This data quality 
information is provided by the GPS receiver for each point.  Most of the records considered as ground truth 
displayed standard deviations of 1 cm to 2 cm.  Position records not meeting these criteria were experienced on parts 
of the course near buildings and large trees (unfavorable GPS conditions due to loss of satellite line-of-sight and 
multipath), and were not considered to be valid ground truth points.  

 

     
Figure 5. The ground truth data logging unit consists of a GPS receiver with memory card for logging data, a 

differential GPS data link radio, antennas, and battery power. 

Data collection times were picked to avoid particularly poor GPS conditions through the use of an Applanix 
Mission Planning Tool.  Figure 6 shows spikes in the Position Dilution of Precision (PDOP) values due to satellite 
constellation geometry at various times of the test day.  These periods often correspond to times when the number of 
satellites visible form the NIST location is reduced, but can also occur when the satellites are not well spread out.  
These times were avoided for the ground truth data collection. 

                                                 
* Commercial equipment and materials are identified in order to adequately specify certain procedures.  In no case does such identification imply 
recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that these materials or equipment 
identified are necessarily the best available for the purpose. 
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Figure 6. Left: Spikes in Position Dilution of Precision (PDOP) for the day of the test.  Right: The number of 
satellites visible from the NIST location.  The horizontal axis is time-of-day.  Ground truth data collection avoided 

times of high PDOP and low numbers of satellites. 

B. Performance Analysis 
To determine the quality of the collected world model data, a map was generated from the world model data as 

shown in Figure 7 (left).  Obstacle costs shown in the map vary from 0 (lowest cost - blue) through red (highest cost 
- 256) as shown in the scale next to the map.  The mapping algorithm calculates where is each obstacle data point is 
relative to the vehicle position using onboard GPS and inertial data.  The map data was then compared to collected 
ground truth data.  Figure 7 (right) shows ground truth data overlaid onto the obstacle map shown Figure 7 (left).   
To test how well the obstacle map compares to ground truth, an average error between map and ground truth closest 
points and the corresponding standard deviation were determined. The equations to compute these errors are as 
below: 
 

For each ground truth point (n, e), find the closest obstacle point (on, oe) in the map and compute the distance 
between these points according to:   
 

   )))(())((( oeeoeeonnonnd −−+−−=  
 
Then compute Average Error = sum of distances (d) / (number of points and standard deviation of the error) = 
sqrt (variance) where variance = (sum of the difference between the distance and average error) / number of 
points. 

 
Table 1 shows the average distance and standard deviation for each major obstacle including: large fence, small 

fence and hay bales.  The results show that the vehicle places obstacles within the map relative to the vehicle that 
can include a very large average error in distance relative to the actual location.  This error has little effect on the 
vehicle avoiding an obstacle that is seen for the first time as in Figure 3 (left) or one that remains within the local 
map.  However, once the vehicle drives beyond the local map that includes an obstacle, the next time the vehicle 
needs to plan around that same obstacle, its position uncertainty can cause the path to be planned wrong. It could 
plan a path that is a large distance from the actual obstacle, even plan a path to pass it on the opposite side, or many 
other possible path planning scenarios.  
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Figure 7. Left: Map generated from world model obstacle data. Obstacle costs = 0 (lowest cost - blue) through red 
(highest cost - 256).  Right: Map of obstacle data (red) above a cost of 160 compared to ground truth (blue). 

 
 

 Long Fence Left Bale Right Bale Short Fence 
Average Error (m) 0.91 0.83 1.52 0.48 

Standard Deviation (m) 0.71 0.28 0.37 0.30 
Table 1.  Average distance error and standard deviation of each obstacle compared to ground truth. 

 
A few possible causes to this obstacle location error are a combination of: 
• the vehicle’s combined GPS and inertial information is obviously not as accurate as the ground truth GPS 

system, 
• the data collected from the stereo cameras is not accurate, adding further error to the obstacle map, and 
• the algorithm that places the obstacles in the map is not accurate. 
 
The first point cannot be corrected without replacing the onboard positioning sensors with more accurate GPS 

equipment. The second point can perhaps be improved slightly with better stereo camera algorithms and/or 
calibration. The third point may also be a calibration issue that consistently places obstacles in an offset location 
from actual.  Ideally, better sensors for obstacle detection and vehicle positioning are the best remedy. 

V. CONCLUSIONS AND FUTURE WORK 

This paper has described the implementation of a 4D/RCS world modeling system as applied to the LAGR 
learning problem. The world model was designed to act as a bridge between multiple sensory inputs and a behavior 
generation (path planning) subsystem for the LAGR off-road, autonomous driving within 100 m. Higher 4D/RCS 
levels can accommodate longer distances.  The world model maps have been described, as well as the functions used 
to maintain the model. The examples include integrating and fusing sensory data from multiple sources into the 
world model map.  The representation is currently being used as part of the LAGR Project test runs at DARPA-
selected test sites.  

Due to time and funding limitations, parts of the 4DRCS world model [8] have not yet been implemented. For 
example, the confidence-based mapping may not be adequate for the task of modeling moving objects (cars, targets, 
etc.). Additional research is also needed to broaden the system's terrain and object classification capabilities. The 
number of terrain and object classes currently used is small; the ability to recognize and label bodies of water, rocky 
roads, buildings, fences, etc. would enhance the vehicle's autonomous driving performance. 

World model data was compared to ground truth data in the form of obstacle map comparison.  The results 
showed that obstacles placed in the cost map have relatively large errors from their actual locations.  Errors can be 
caused by a combination of low quality onboard GPS and inertial systems, stereo cameras and perhaps their distance 
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to objects algorithms and calibration, and/or by offset obstacle placement in the map.  The last two points could 
perhaps be improved by their calibration.   

Future efforts toward improved performance should therefore include: calibration of obstacles placed in the 
map, evaluating obstacle offset locations when placing them in the map, and comparison of stereo cameras versus 
other non-contact sensors, such as LADAR (LAser Detection And Ranging) sensors.  Also, towards indoor 
applications, effort should be placed on measuring the performance of an intelligent vehicle mapping a facility, such 
as for manufacturing, requiring even greater accuracy of obstacle placed in cost maps than for outdoor 
environments.  Intelligent vehicles that navigate through flexible and unstructured indoor facilities with close 
tolerance machine access, maneuverability around people and expensive equipment, etc. must include real time map 
updates that allow appropriate vehicle behavior for safe, yet effective vehicle control. 
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